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XII. On Azxes of Elasticity and Crystalline Forms.
By WiLLiam JouN MacquorN Ranking, C.E., F.R.SS. Lond. and Edin.

Received June 15,—Read June 21, 1855.

§ 1. General Definition of Axes of Elasticity.

As originally understood, the term “ Axes of Elasticity” was applied to the inter-
sections of three orthogonal planes at a given point of an elastic medium, with respect
to each of which planes the molecular actions causing elasticity were conceived to be
symmetrical.

If the elasticity of solids arose either wholly from the mutual attractions and repul-
sions of centres of force, such attractions and repulsions being functions of the mutual
distances of those centres, or partly from such mutual actions, and partly from an
elasticity like that of a fluid, resisting change of volume only, it is easy to prove that
there would be three such orthogonal planes of symmetry of molecular action in every
homogeneous solid.

But there is now no doubt that the elastic forces in solid bodies are not such as
can be analysed into fluid elasticity and mutual attractions between centres simply ;
and though there are, as will presently be shown, orthogonal planes of symmetry for
certain kinds of elastic forces, those planes are not necessarily the same for all kinds
of elastic forces in a given solid.

The term “ Axes of Elasticity,” therefore, may now be taken in a more extended
sense, to signify all directions, with respect to which certain kinds of elastic forces are
symmetrical ; or speaking algebraically, directions for which certain functions of the
coefficients of elasticity are null or infinite.

The theory of Axes and Coefficients of Elasticity is specially connected with
that branch of the Calculus of Forms which relates to linear transformations,
and which has recently been so greatly advanced by the researches 6f Mr. Syr-
VESTER, Mr. CayLEy, and Mr. BooLe. In such applications of that Calculus as
occur in this paper, the nomenclature of Mr. SyLvesTer is followed *; and by the
adoption of the ©“ Umbral Notation” of that author, immense advantages are gained
in conciseness and simplicity .

* See Cambridge and Dublin Mathematical Journal, vol. vii.; and Philosophical Transactions, 1853.
+ See the Note at the end of the paper.
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2. Strains, Stresses, Potential Energy, and Coefficients of Elasticity.

In this paper, the word *“Strain” will be used to denote the change of volume and
figure constituting the deviation of a molecule of a solid from that condition which
it preserves when free from the action of external forces; and the word “ Stress” will
be used to denote the force, or combination of forces, which such a molecule exerts
in tending to recover its free condition, and which, for a state of equilibrium, is equal
and opposite to the combination of external forces applied to it.

In framing a nomenclature for quantities connected with the theory of elasticity,
0N is adopted to denote strain, and vdciwc to denote stress.

It is well known that the condition of strain at any given point in the interior of a
molecule may be completely expressed by means of the following six elementary
strains, in which &, 5,  are the components of the molecular displacement parallel to
three rectangular axes z, ¥, =.

. dt dy ay
Elongations . . . —=a«; @=[3; =3
. . a5 dy dt¢  dt dy | dE
Distortions . . . dy—l—zz‘—l; %—l—%_(b, %—'—Eg}:”’

1t is also well known that the condition of sfress at a given point may be com-
pletely expressed, relatively to the three rectangular coordinate planes, by means of
six elementary stresses, viz.—

Normal Pressures . . . P,, P,, P,
Tangential Pressures . . Q,, Q,, Q;

these quantities being estimated in units of force per unit of surface.

Let each elementary stress be integrated with respect to the elementary strain
which it tends directly to diminish, from the actual amount of that strain, fo the con-
dition of freedom ; the sum of the integrals is the Potential Energy of Elasticity of
the molecule drdydz, expressed in units of work per unit of volume ; viz.—

U:f °Plda+§ °P2d@+§°1)3(17
o s y

.+5;0Qld)\+5:Q2d‘u,—|—5:oQ3du.. Coe e e e e e (L

The condition that the function U shall have the same value, in what order soever
the variations of the different elementary strains take place, amounts to supposing,
that no transformation of energy of the kind well distinguished by Professor THoMson
as frictional or irreversible takes place during such variations; in other words, that
the substance is perfectly elastic.

Each of the elementary stresses being sensibly a linear function of the six elementary
strains, the Potential Energy of Elasticity is, as Mr. Green first showed, a function
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of those strains of the second degree, having twenty-one constant coefficients, which
are the coeflicients of elasticity of the body, and will in this paper be called the
Tasinomic Coefficients; that is to say, adopting Mr. GREEN’s notation for such
coefficients,—

U= () 5+ 5+ +0 5+ )5+
+(By)By+(ye)ye +(«B)«p
+ () 00+ (Ap)rw
+(an)ad +(Bw) B+ ()
+ (BB A+ (yw)ypt (wr)er
F W et BB . . L (@)

From a theorem of Mr. SyLvester it follows, that every such function as U is
reducible by linear transformations to the sum of six positive squares, each multiplied
by a coefficient. The nature and meaning of this reduction have been discussed by
Professor WirLiam THoMSON. ' '

The following classification of the Tasinomic Coefficients will be used in the
sequel :— '

Designation of Coefficients. Elasticities. : Symbols,
Euthytatic. . . Direct or Longitudinal . («®) () (¥
Orthotatic < Platytatic . . . Lateral . . . . . . (By) (ya) («8)
Goniotatic. . . Rigidities . . . . . &) (¥ (¢
Plagiotatic . . . . . . . Unsymmetrical . . B (uv), &e. &e.

The twenty-one equations of transformation by which the values of these coefficients,
being known for any one set of orthogonal axes, are found for any other, are founded
on the following principles.

It is well known, that for rectangular transformations, the operations

d d d
i Ay dz
are respectively covariant with
T, Y, 3
from which it is easily deduced, that because the displacements
& u, ¢
are respectively covariant with
r, Y, 2,

therefore the elementary strains,

“) 6 2 71 )\'J (‘b b 4

the operations,
d d d d d d
E;, %) Zif;l, 23;\) 23‘;’3 23;

2mM2
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and the strains
Pl) P2) P3) 2Q19 2Q29 2Q3
must be respectively covariant with the squares and products,

2 2

2, vy, 2%, 2yz, 2zx, 2xy.
3. Thiipsimetric and Tasimetric Surfaces and Invariants.
Isotropic functions of the elementary strains and stresses, which may be called
respectively Thlipsimetric and Tasimetric Invariants, are easily deduced from the

principle, that the strains may be represented by the coefficients of the following
Thlipsimetric Surface,

wd®-+ Byttt prrtray=1, . . . . . . . (3)
and the stresses by the coeflicients of the Tasimetric Surface,
P2 4-Py*+P®4+-2Qyz +2Quxx4-2Qxy=1. . . . . . (4.

These surfaces, and others deduced from them, have been fully discussed by
M. Cavucry and M. Lami.

The invariants in question may all be deduced from the following pair of contra-
gredient matrices ;—

For Strains. For Stresses. -
v ‘
o 2 g Pl Q3 Qz
A
(5-)< % ;8 2 Qa P2 Ql >(5 A-)
A
%’ 5 Y Qz Ql P3
- -

~ The following are the primitive thlipsimetric invariants, from which an indefinite
number of others may be deduced by involution, multiplication, addition, and sub-
traction :—
a~+B-+4y=140, (the cubic dilatation) ;
By +yotoaf—1 (W4 47 =1,; e e e e e ()
efy +irwr—E(an B+ 9r*) =4,
The Potential Energy U is what Mr. SyLvester calls a “ Universal Mixed Con-
comitant,” its value being

U=—31Pa+PL+4+Py+Q2r+Qu+Qp). . . . . . (7)

4. Tasinomic Functions, Surfaces, and Umbree.

If, in any isotropic function of the coordinates and the elementary strains, there
be substituted for each square or product of elementary strains, that Tasinomic
Coefficient which is covariant with it, the result will be an Isotropic Function of the
Coordinates and Tasinomic Coefficients, called a Tasinomic Function. '
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The following Table of Covariants is readily deduced from the principles stated at
the end of § 2 :—
j Squares of Strains . &2, [e38 v, A% w, v,
| Tasinomic Coefficients @), B, O, 4, 4(?), 40°;
[ Products of Strains . Sy, ye, af, oy, A, A,
lTasinomic Coeflicients (By), (ya), («8), 4(w), 4(n), 4(\w), .
ok, oy o, pr, B, Brs,  va, oy, 2
2(en), 2up), 2(w), 28, 2(8w), 2(B), 207), 20w, 2().)

Each Tasinomic Function being equated to a constant, forms the equation of a
Tasinomic Surface; and on the geometrical properties of such surfaces depend many
of the laws of coeflicients and Axes of Elasticity.

A convenient and expeditious mode of forming Tasinomic Functions is obtained
by the aid of an Umbral Notation analogous to that introduced by Mr. SyLvesTer
in the Calculus of Forms.

Let each Tasinomic Coeflicient be regarded as compounded of two Tasinomic
Umbre, those umbree being expressed by the following notation :

(“): (B)J (7):‘(7‘)’ ((")9 (”);

then the following equation, deduced from that of the Thlipsimetric Surface (3), by
substituting umbrae for elementary strains according to the following Table of
Covariance,

-

Covariant

Covariant

(8)

Strains . . o B, v A, 75 v,
Umbree . . (o), B), ), 20), 2(w), 20),

is the equation of the Tasinomic Umbral Ellipsoid, from which, by elimination, mul-
tiplication, involution, addition, subtraction, and differentiation, various Tasinomic
Functions may be deduced,

@2+ B+ DL+ 2Wyz4+2Wat2(ay=@)=1. . . . . (84)

5. Tasinomic Invariants and Spheres.

Tasinomic Invariants are constant Isotropic functions of the Tasinomic Coefficients,
which are deduced, either by substitution from Thlipsimetric Invariants, or directly
from the Umbral Matrix,

(@) () ()
G @B W .. ()
() ) ()

The following invariant is umbral of the first order :—

(Ftg+is) O=@+@+H=0). . . . . . (o)
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Invariants of the second order in Umbroe are real quantities of the first order, viz.—

(@®) 4+(B°) +(v*) +2(By) +2(y=)+2(eB)=(4,)* (the cubic elasticity)
Br)+(ye)+(@=B)— W)= (@)— (") =(4)

(@) +(8) +(7) +20%) +205) +207) =(0—=2(6). . . . . . (10
The equation of a Tasinomic Sphereis formed by wultiplying a Tasinomic Invariant by
e U

or any power of that quantity, and equating the result to a constant.

6. Of Two Tasinomic Ellipsoids, and their Axes, Orthotatic and Heterotatic.

The equations of two Ellipsoids with tasinomic coeflicients are derived from that
of the Umbral Ellipsoid (8a.), in one case, by multiplying each term by the Umbral
Invariant (4,), and in the other, by substituting for each Umbra in the function (p),
the contravariant component of the Inverse to the Umbral Matrix (9.). The results

are as follows :—
OrtHOTATIC ELLIPSOID.

(0) X (2)={(«") + («B) + (yo) }a*+ {(8*) + (By) + (v) }*
+{(") +(y2)+(By)}=*
+2{(an) + (BA) + () Yys+2{ (ap) + (Bp) + (yw) } s+ 2{ () + (Br) + (y) }ay=1. (11.)

HereroraTIiC ELLIPSOID.

1(BY) = 02} 4 { (%) — (W) }y*+ { (eB) — ()} 2*
+2{ () — (1) Jyz +2{ (W) — (Bw) ra+ 2{ () — () Jay=1. . . (12.)

The three Orthotatic Axes are three rectangular directions for which the following
sums of Plagiotatic Coefficients are null :—

(@) +EN+ (=05 () +Bu)+p)=0; (@)+@)+m)=0. . (13)
It was proved by Mr. Havenron, in a paper published in the Transactions of the
Royal Irish Academy, vol. iii. part 2, that there are three rectangular directions
having this property in a solid whose elasticity arises solely from the mutual actions
of physical points, and which has but fifteen independent coefficients of elasticity.
The present investigation shows that there are three such axes at each point of
every solid, independently of all hypothesis. The physical meaning of this result is
expressed by the following

THEOREM As To ORTHOTATIC AXES.

At each point of an elastic solid, there is one position in which a cubical molecule may
be cut out, such, that a uniform dilatation or condensation of that molecule by equal
elongations or equal compressions of its three dimensions, shall produce no tangential
stress on the faces of the molecule.
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The properties of the Heterotatic Axes are expressed by the following equations :—

(@)= (@)=0;5 (M)—Ba)=0; (w)—(M=0; . . . . (14)
or by the following
THEOREM As To HETEROTATIC AXES.

At each point of an elastic solid, there is one position in which a cubical molecule may
be cut out, such, that if there be a distortion of that molecule round x (x being any one
of its three axes) and an equal distortion reund y (y being either of its other two axes),
the normal stress on the faces normal to x arising from the distortion round x, shall be
equal to the tangential stress round z arising from the distortion round y.

The six coefficients of the Heterotatic Ellipsoid may be called the Heterotatic Dif-
JSerences. For a solid whose elasticity is wholly due to the mutual attractions and
repulsions of physical points, each of those differences is necessarily null ; therefore
they represent a part of the elasticity which is necessarily irreducible to such attrac-
tions and repulsions. There is reason to believe that part at least of the elasticity of
every substance is of this kind.

If this part of the elasticity of a solid be, as suggested in a series of papers in the
Cambridge and Dublin Mathematical Journal for 1851-52, a species of fluid elasti-
city, resisting change of volume only, the solid may be said to be Heterotatically Iso-
tropic. The equations (14.) will be fulfilled for all directions of axes, and also the
following equations :— )
B — (=) — () =EB)—=()s . . . . . . (15)
that is to say, the excess of the Platytatic above the Goniotatic Coefficient will be
the same in every plane. :

In a substance Orthotatically Isotropic, the equations (13.) are fulfilled for all direc-
tions, and also the following :—

@)+ (@B)+ (re) =)+ B+ (B) =)+ () +By), . . . (16)

that is to say, a uniform compression in all directions produces a uniform normal
stress in all directions, and no tangential stress.
. The equations (16.) may be reduced to the following form :—

@)= PB=E)—a)=0)—=3). - . . . . . (17)
In a substance which is at once Orthotatically and Heterotatically isotropic, there
may still be eleven independent quantities amongst the tasinomic coefficients, viz.—

Three Euthytatic Coeflicients, (%), (8%), (7%, ]
The isotropic excess. . . . (&)—(By), .8y
The isotropic excess. .. . . (By)—(*%),

Six Plagiotatic Coefficients . (B), (¥A), (yw), (ew), (@), B J

Such a substance may therefore be far from being completely isotropic with respect
to elasticity.
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7. Biquadratic Tasinomic Surface. Homotatic Cocfficients. Euthytatic Axes defined.

If the equation (8a.) of the Umbral Ellipsoid be squared, there is obtained the fol-
lowing equation of a Biquadratic Tasinomic Surface :—

(9= ()2 + () + ()2
+2{(By)+2(")}y*=*+2{(ye) +-2(0") } @’ +2{(«B) +-2(~") } 2%’
+4{2(uw) 4 (er) }’yz 4+4{2 () + (Bw) Yey*s +4{2(\w) + (v) Yoy 2®
+4(BNY 2+ 4(r0 )y +4(yp) Fo+4(ap) 28’ +4(w) By +4(Br)ay*=1. . (19.)

The fifteen coefficients of this surface (which will be called the Homotatic Coeffi-
cients) are covariant respectively with the fifteen biquadratic powers and products
of the coordinates, with proper numerical factors.

It is obvious, that when the fifteen Homotatic Coeflicients, and the six Heterotatic
Differences, are known for any set of Orthogonal Axes, the twenty-one tasinomic
coefficients are completely determined.

M. HaveHToN, in the paper previously referred to, discovered the biquadratic sur-
face for a solid constituted of centres of force. It is here shown to exist for all solids,
independently of hypotheses. i

Those diameters of the Biquadratic Surface which are normal to that surface, are
axves of maximum and minimum direct elasticity, and have also this property, that
a direct elongation along one of them produces, on'a plane perpendicular to it, a
normal stress, and no tangential stress; so that they may be called Euthytatic Axes.
Though such axes sometimes form Orthogonal Systems, their complete investiga-
tion requires the use of oblique coordinates, and is therefore deferred till after the
eighteenth section of this paper, which relates to such coordinates.

8. Orthogonal Awes of the Biquadratic Surface. Metatatic Axes, Orthogonal
and Diagonal.

By rectangular linear transformations, it is always possible to make three of the
terms with odd exponents, or three functions of such terms, vanish from the equation
of the Biquadratic Surface. Thus are ascertained sets of Orthogonal Axes having
special properties.

To exemplify this, let the rectangular transformation be such as to make the fol-
lowing functions vanish :—

(BN =Y —=y=zs  {(w)— ()} (FP—azws  {(w) ~(B)} (@ —y>)ay.

A cubical molecule having its faces normal to the axes fulfilling this condition has
the following property :—if* there be a linear elongation along y, and an equal linear
compresston along z (ov vice versd), no tangential stress will result round x on planes
normal to 'y and z; and similarly of other pairs of axes.

This set of axes may be called the Orthogonal or Principal Metatatic Axes, and
their planes, Mectatatic Planes.
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Let the suffix 1 designate coordinates and coefficients referred to these axes. Let
Oy, Oz be any new pair of orthogonal axes in the plane %,%,. Then since (81)—(y2)
is covariant with (y*—z%)ys, it follows that

sin 4w

BN —()=2@+4@) =)=y —— - - . - (20)
(where o= <,0y),

a quantity which is =0 for all values of » which are multiples of 45°. There are of
course similar equations for the other metatatic planes. Hence it appears that in each
of the three Metatatic Planes there is a pair of Diagonal Metatatic Axes, bisecting the
right angles formed by the Principal Metatatic Azxes.

Each pair of diagonal axes is metatatic for that plane only in which it is situated.

Thus there are in all nine metatatic axes, three orthogonal axes, and three pairs of
diagonal axes. The diagonal axes are normal to the faces of a regular rhombic dode-
cahedron.

Let Oy, Oz be a pair of rectangular axes in any plane whatsoever ; Oy', Oz' any
other pair of rectangular axes in the same plane; and let '

<yOy'=d;

then
sin 4o’

(B = (7)) = {2(By) +4(W) — (B) = (¥")}——+{(B) — (yM) }cos 4, . (21.)
a quantity which is null for eight values of &/, differing from each other by multiples
of 45°. Hence, in each plane in an elastic solid, there is a system of two pairs of axes
metatatic for that plane and forming with each other eight equal angles of 45°.

In equation (21.), make W= —w

(Br)' = ()= (Br)— (y1),=0;

then from equations (20.) and (21.), it is easily seen that

2(B)+4() = (B)— () ={2(By)+4()— (B):—(¥"):} . cos dw. . . (22)

The trigonometrical factor cos 4w is 41 for all values of » which are even mul-
tiples of 45°, —1 for all odd multiples of 45°, and =0 for all odd multiples of 22%°.
Hence, in every plane in an elastic solid, the quantity (22.), which may be called the
Metatatic Difference, is a maximum for one of the two. pairs of Metatatic Axes, a
minimum of equal amount and negative sign for the other, and null for the eight
intermediate directions.

9. Of Metatatic Isotropy.

A solid is Metatatically Isotropic, when if a cubical molecule, cut out in any position
whatsoever, undergo simultaneously an elongation along one axis, and an equal and
opposite linear compression along another axis, no tangential stress will result on the
faces of that molecule.

MDCCCLVI. 2N
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For such a substance, the metatatic differences must be null for all sets of axes, viz.—
2(By)+4(") — (B — (") =0;
20ye) +4(E) = (") — @) =03p . . . . ... (28)
2(e)+4(%) — () — (6)=0.

In a paper in the Cambridge and Dublin Mathematical Journal, vol. vi., this theo-

rem was alleged of all Homogeneous solids, it having been, in fact, tacitly taken for
granted, that Homogeneity involves Metatatic Isotropy, as above defined.

10. Of Orthotatic Symmetry.

If it be taken for granted that symmetrical action with respect to a certain set of
axes, between the parts of a body under one kind of strain, involves symmetrical
action with respect to the same axes under all kinds of strains, then one and the
same set of orthogonal axes will be at once Orthotatic, Heterotatic, Metatatic, and
Euthytatic, and for them the whole twelve plagiotatic coefficients will vanish at once,
and the independent tasinomic coeflicients be reduced to the nine Orthotatic Coeffi-
cients enumerated in Article 2. As long as the rigidity of solid bodies was aseribed
wholly to mutual attractions and repulsions between centres of force, it is difficult to
see how, with respect to homogeneous substances, the above assumption could be
avoided. It is probable that there exist substances for which it is true. Such sub-
stances may be said to be Orthotatically Symmetrical.

Orthotatic Symmetry requires that the equation (19.) of the quuadratlc surface
should be reducible by rectangular transformations to its first six terms, and that the
axes so found should also be those of the Heterotatic Ellipsoid. The conditions
which must be fulfilled in order that a Biquadratic function of three variables may be

reducible by rectangular transformations to its ﬁlSt six terms, have been investigated
by Mr. BooLE*.

11. Of Cybotatic Symmetry..

Let a substance be conceived which is not only Orthotatically Symmetrical, but

for which the three kinds of Orthotatic Coefficients are equal for the three orthotatic
axes, viz.—

@)=@)=0); EN=@x=p); ®)=E)=0"). . . . (24)
Then for such a substance the Metatatic Difference may be expressed by
2Bn)+4(A) =2 . . . . . L L L L L (25)

and if the body be not Metatatically Isotropic, this difference will have equal maxima
and minima for the three Orthogonal Axes, normal to the faces of a cube, and con-

versely, equal minima or maxima for the six diagonal axes, normal to the faces of
a regular rhombic dodecahedron.

# Cambridge and Dublin Mathematical Journal, vol. vi.
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Symmetry of this kind may be called Cybotatic, from its analogy to that of crystals
of the Tessular System. "

12. Of Pantatic Isotropy.

When a body fulfils the conditions of Cybotatic Symmetry, and at the same time
those of Metatatic Isotropy, it is completely isotropic with respect to Elasticity, or
Pantatically Isotropic. It has but three tasinomic coefficients, viz. the Euthytatic,
Platytatic, and Goniotatic coefficients, which are equal for all sets of axes, and are
connected by the following equation, expressing the condition of Metatatic Isotropy :

@)=@y)+202). . . . . . . . . . (26)

The properties of such bodies have been fully investigated by various authors.

13. Of Thlipsinomic Coefficients.

If the six elementary strains «, &c. at a given point in an elastic solid, be expressed
as linear functions of the six elementary stresses P, &c., these expressions will con-
tain twenty-one coeflicients of compressibility, extensibility, and pliability, which are
the second differential coefficients of the potential energy of elasticity with respect to
the six elementary stresses; that energy being represented as follows :—

U= (@) 2+ () (@) 2 () L (1) B (1) &
+ (b)P,Py+- (ca) P,P, + (aB)P,P,+ (mn) QuQu+ () Q@+ (Im)Q,Q,
+{(al) P,4(3) Port-(cl) PQ,
+{(am)P, 4 (bm) P, 4 (cm) P} Q,
+{(an) P,4-(bn) P,4-(en) P} Qs . . . . . . . . . (27)
The twenty-one coefficients in the above equation may be comprehended under the

general term Thilipsinomic, and classified as follows :—
Designations of Coefficients. Properties expressed by them. ~ Symbols.
I Euthythliptic . Longitudinal Extensibilities (a*), (8*), (¢,
Orthothlipticy Platythliptic . Lateral Extensibilities . . (bc), (ca), (ab),
lGoniothliptic . Pliabilities . . . . . . (&, (m), (),

Plagiothliptic . . . . . . Unsymmetrical Pliabilities . (mn), &c. &c.

14. Of Thlipsinomic Transformations, Umbree, Surfaces, and Invariants.

The equations of transformation of the Thlipsinomic Coefficients are easily deduced
from the principle, that the operations
d d d d d d

v, ap; 4P, 4@, dQ, dQ,
are respectively covariant with
Pl7 P2) P3) QQI’ 2Q2, 2Q39
and these with
2 2

2, vy, < 2yz, 2zx, 2ay.
2 N2
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We may regard the Thlipsinomic Coefficients, like the Tasinomic Coefficients, as
binary compounds of the following six Umbre,

(@, @), (9, B, (m), (w),
which being respectively substituted for

Pl) Pz’ P3’ 2Q13 2Q2) 2Q3
in the equation of the Tasimetric Surface (4.), produce the following equation of the
Umbral Thlipsinomic Ellipsoid,

(a)2*+(b)y*+ (o) + (Dyz+ (m)ze+(n)ey=1, . . . . . . (28)

from which, by involution, multiplication, and other operations exactly analogous to
those performed on the Umbral Tasinomic Ellipsoid, there may be deduced the

equations of Thlipsinomic Surfaces exactly corresponding to the Tasinomic Surfaces
already described ; while, from the Umbral Matrix,

(@) () %(m)
imy B O . . . . 0.0 (29)
3(m) () (o)
may be formed Thlipsinomic Invariants corresponding to the Tasinomic Invariants.
Hence it appears, that every function of the Tasinomic Coefficients is converted into

a function of the Thlipsinomic Coefficients with analogous properties, by the substi-
tution of Thlipsinomic for Tasinomic Umbrae according to the following table :—

Tasinomic Umbree. . . . . (¢), B), (), @), (), (),
Thlipsinomic Umbree . . . . (a), (b), (c¢), (), i(m), i(n).
Amongst the Thlipsinomic Invariants may be distinguished the Cubic Compressibility,

which is formed by squaring the umbral invariant (a)+4(b)4-(c), and has the follow-
ing value:

(@) 4 (5) () +2(b0) +2(ca) +2(ab).

15. Thlipsinomic and Tasinomic Contragredient Systems.

Let the following square matrices be formed with the Tasinomic and Thlipsinomic
Coefficients respectively :—

(@) («B) (ye) (ed) (o) (w) || (@) (ab) (ca) (al) (am) (an) )
(@B) (B) By) (Br) Bw) (Bv) | (ab) (B7) (be) (Bl) (bm) (bn)
(re) (Br) () () (yw) () | (ca) (be) (¢®) (cl) (em) (cm)
@) @) 6N 0 0m) 0 | @) @) @) @ ) @y [ O
() (Bw) (vw) () () (wv) | (am) (bm) (cm) (Im) (m?) (mn)
(@) @) ) ) ) () | () (bn) (n) @) (mn) (»*) |
Then will these matrices be mutually inverse, the two systems of coefficients arrayed
in them, with their respective systems of functions, mutually contragredient, and

(30.) <
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each coeflicient or function belonging to one system contravariant to the correspond-
ing coefficient or function belonging to the other system.

~ The values of the coefficients in either of those matrices are expressed in terms of
those in the other matrix, in Mr. SyLvesTter’s umbral notation, by twenty-one equa-
tions, of which the following are examples :—

(@) = B) > @) (@) ) . (=), B) @), @, @) 0 :

®B), @), @), (w), ) @), B)s @) &) @), O . (32)
(ab)= B @), @) (), ) - @, B, @), ), (W), ) J

@, @, M), @ O [@), @), @ O @), O

16. Of Thlipsinomic Azxes.

If, under given conditions, any symmetrical system or function of the constituents
of one of the above matrices be null, then under the same conditions will the contra-
variant system or function of the constituents of the inverse matrix be null or infinite.
Therefore Systems of Thlipsinomic Azes coincide with the corresponding systems of
Tasinomic Axes.

17. Platythliptic Coefficients are negative.

It may be observed as a matter of fact, that in consequence of the largeness of
the Euthytatic Coefficients («*), (8*), (v*), as compared with the other Tasinomic
Coeflicients, the Platythliptic Coefficients (b¢), (ca), (ab) are generally, if not always,
negative.

To illustrate this, the case of Pantatic Isotropy may be taken, for which the two
matrices have the following forms :—

(@) @By By 0 0
By) () @By) 0 0
By By) @ 0 0 (be) (bc) (a8 O

0 0 0 (» o 0o 0o o0 (™ o
0 0 o0 0 (™ o0 o 0 o0 o (I o
0 0 0 0 0 o 0o 0 o0 0 (P

(@) (be) (be)y O O
(bc) (@® (be) O O
0

L (33.)

S O O ©
S O o O

from which it is easily seen that the sole Platythliptic coefficient has the following
value:

—(By)
(bc)_(u9)2+(ag)(ﬁy)_Q(ﬂy)g. N G R T

The denominator of this fraction is always positive so long as («?) exceeds (8y); a
condition invariably fulfilled by solid bodies, and, in fact, necessary to their exist-
ence.



274 MR. MACQUORN RANKINE ON AXES OF

18. Of Oblique Coordinates and Contraordinates.

As there are, in the relations between two systems of oblique coordinates, or
between a system of oblique coordinates and a system of rectangular coordinates,
six independent constants of transformation, it is possible, by referring the equation
of the Biquadratic Surface (19.) to Oblique Coordinates, to make the six terms vanish
which contain the cubes of the coordinates.

The conception of the physical meaning of such a transformation is much facili-
tated by the employment of a system of three auxiliary variables, which will be desig-
nated as Contraordinates.

The relations between coordinates and contraordinates are as follows :—

Through an origin O let any three axes pass, right or oblique. Let R be any point,
and let OR=r.

Through R draw three planes, parallel respectively to the three coordinate planes,
and intersecting the axes respectively in the points X, Y, Z. Also, on OR, as a dia-
meter, describe a sphere, intersecting the axes respectively in U, V, W. Then will
OX=z, OY=y, O0Z=x
be the coordinates of R. as usual, and
OU=u, OV=vp, OW=w
its contraordinates, being, in fact, the projections of OR on the three axes.

For rectangular axes, coordinates and contraordinates are identical.
Coordinates and Contraordinates are connected by the following equation :—

rr=urtoytwz. . . . . . . . . . (84)
In the language of Mr. SYLVESTER, a system of Coordinates and the concomitant
system of Contraordinates are mutually Contragredient ; and the square of the radius-
vector is their universal mived concomitant.
~ Let the cosines of the angles made by the axes with each other be denoted as
follows :— cosyOz=c,; coszx0x=c,; cosxOy=c,;
then the contraordinates of a given point are the following functions of the coordi-

n —
ates u=xr -fcy-+c

v=ce+y oz N 1N
W= x40, Y43

Also let X

1, ¢, ¢

¢y 1, ¢|=1—=C—ci—c242¢,6,6,=C; )
Cyy €1y 1

1—c? 1—¢? 1—c?
=l 2 =h,; S =hy; [

C C C
€10l Ca—Cy0) C3—C16q

v — 3 C -"'k2§ C ZkaQJ
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then the coordinates are the following linear functions of the contraordinates :—

= hu—ky—kuw;
y=—kut+hpy—bkw; . . . . . . . . . (36.)
= —ku—kv+haw.
Also,
r*=r’+y +24+2cys+-2c20+2¢0y . . . . . . . (87
=hw*+h*+ b — 2k vw—2k,wu—2kuv. . . . . (37a.)

Differentiations with respect to the contraordinates are obviously covariant with
the coordinates, and vice versd ; that is to say,

— 4 4 d 4 d d
the operations W W B W W Z—u} (38.)

w, v, w, x Y, 3.

are respectively co-
variant with

By making substitutions according to the above law of covariance in the equations
(34.), (37.), (874.), three equivalent symbols of operation are obtained, which, being
applied to isotropic functions of the second degree, produce invariants of the first
degree.

19. Of Molecular Displacements and Strains as referred to Oblique Azxes.

If the displacement of a particle from its free position be resolved into three com-
ponents, £, 7, {, parallel respectively to three oblique axes, Oz, Oy, Oz, those com-
ponents are evidently covariant respectively with the coordinates =, y, 2.

It is now necessary to find a method of expressing the strain at any particle in an
elastic solid by a system of six elementary strains, which shall be covariant respect-
ively with the squares and doubled-products of these oblique coordinates. This con-
dition is fulfilled by considering the elementary strains as being constituted by the
variations of the components of the molecular displacement with respect to the
distances of the strained particle from three planes passing through the origin, and
normal respectively to the three axes; that is to say, with respect to the contraord:-
nates of the particle, as expressed in the following equations :—

- _dE, oM, & .
Elongations. . . =33 f=g3 y=g 3
e d dg  dt dy . dg| (39.)
o TYip et n . m , d&
Quasi-Distortions . A=—2+47-3 p=-=4-25 y=g 4o

The six elementary strains, as above defined, are obviously covariant with the
squares and doubled-products of the coordinates, according to the following table :—
w By Mmoo n L (40)

2, v, 2%, 2ux, 2z, Qxy.J



276 MR. MACQUORN RANKINE ON AXES OF

20. Of Stresses, as referred to Oblique Azwes.

It is next required to express the stress at any particle of an elastic solid by means
of a system of six elementary stresses which shall be contragredient to the system of
six elementary strains defined in the preceding article. This is accomplished in the
following manner.

It is known that the total stress at any point may be resolved into three normal
stresses on the three principal planes of the tasimetric surface. Let the direction
and siga of any one of those three principal stresses be represented by those of a line
OR, and its magnitude, as reduced to unity of area of the plane normal to that
direction, by the square of that line,

OR’=r2

Let u, v, w be the contraordinates of R, as referred to the oblique axes OX, OY,
OZ. Then will the stresses on unity of area of planes normal to those axes, in the
direction OR, be represented respectively by

ur, ovr, wr.

Let the Elementary Stresses be defined to be, the projections on the three axes of
coordinates, of the total stresses on unity of area of the three pairs of faces of a paral-
lelopiped, normal to the three axes respectively :—then, if we take S to denote the
summation of three terms arising from the three principal stresses, the elementary
stresses will be expressed as follows :—

Normal Stresses on the faces normal to I
z, Y, 2,
P=S.u?; P,=S.»*; P,=S.w?;
Oblique Stresses on the faces normal to >, . . (41)
Y E - x Y
in the directions 3 y 5y x
Q=S.vw; Q,=S.wu; Q,=S.uv.)

These expressions fulfil the condition of making the elementary stresses

P, P, P, Q, Q, Q
contravariant respectively to the elementary strains

@ 5 v Aop, o,
so that for oblique axes, as for rectangular axes, the potential energy of elasticity is
represented by
U= —§(P.e+4P,S4+Py+ Q17‘+Q2}“‘+ Qa”):
the universal concomitant; and may be expressed either by a homogeneous quadratic
function of the six elementary strains (as in equation 2), with twenty-one tasinomic
coeflicients, or by a homogeneous quadratic function of the six elementary stresses,
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as in equation (27.), with twenty-one thlipsinomic coefficients, forming a system con-
tragredient to that of the tasinomic coefficients.

21. Of Tasinomic and Thlipsinomic Umbre for Oblique Azxes.
" The tasinomic coefficients for oblique axes may be regarded as compounded of
Umbrae
@, @, @ @) @, )
contravariant respectively to the elementary strains
@ B, v, ¥ e
and consequently covariant with the squares and products of the contraordinates
ul, v, w ovw, wu, uv;

and the thlipsinomic coefficients for Oblique Axes may be regarded as compounded of -

Umbree
(@), @), (), @), (m), (),

contravariant respectively to the stresses

Pl) Pﬁ) P37 2Q1) 2Q27 2Q3’
and consequently covariant with the squares and products of the coordinates
z, ', 2%, 2z, 2z, 2ay.

22. Of the Biquadratic Surface, and of Principal Euthytatic Azxes.

For oblique as well as for rectangular axes of coordinates, the characteristic function
of the Biquadratic Tasinomic Surface is represented by equation (19.) ; and the fifteen
Homotatic Coeflicients are covariant respectively with suitable multiples of the fifteen
biquadratic powers and products of the contraordinates.

If by linear transformations a system of three axes, oblique or rectangular, be found
which reduce the characteristic function of the Biquadratic Surface to the canonical
form, consisting of not more than nine terms, viz.—

(@)= ()2 +(B)y'+(v")=*

+2{(BY)+2()}¥*="+-2{(r2) +2(") =& +2{ (+8) +2(") }2'y"

+4{2(w) + (1) }ayz +-4{200) + (B) b= +4{2(v0) + (W) }ay=*=1; . (42.)
then for that system of axes, the following six Plagiotatic Coefficients are null,

BYN=0; (y)=0; (yw)=0; (ep)=0; (w)=0; (B)=0; . . (43)
and each of those axes is EurnyraTic, according to the definition in § 7, that is teo
say, is a direction of maximum or minimum direct Elasticity (absolute or relative),
and also a direction in which a direct elongation or compression produces a simply
normal stress.

There are necessarily three Euthytatic Axes at least in every solid, viz. the three

Principal Euthytatic Azes as above described, which are normal to the faces of a
MDCCCLVI. 20 ‘
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Hexahedron, right or oblique as the case may be; but in special cases of symmetry
there are additional or secondary euthytatic axes, of which examples will now be given.

23. Of Rhombic and Hexagonal Symmetry.

When a solid has three oblique principal euthytatic axes making equal angles with
each other round an axis of symmetry, and having equal systems of Homotatic
Coeflicients corresponding to them, viz.—

@)=)=""; Br)+23)=(r=)+2(p)= (“(3)+2("2)1
2(w)+ (@) =200+ Bu)=20)+(») . . . . .J

it may be said to possess Rhombic Symmetry, because the three oblique axes are
normal to the faces of one Rhombohedron, and to the edges of another belonging to
the same series, crystallographically speaking. It is evident in this case, that the
Axis of Symmetry must be a fourth Euthytatic Axis.

In the limiting case, when the three oblique axes make with each other equal
angles of 120° they lie in the same plane, normal to the axis of symmetry, and are
normal to the faces of one hexagonal prism, and the edges of another.

Let Oy, denote the longitudinal axis of symmetry of the prism; Osz, any one of
the three transverse axes perpendicular to Oy,. The equation of a section of the
Biquadratic surface by the Plane of Hexagonal Symmetry y,z,, is as follows :—

@)+ (@)= +2{Br)+2()}yizi=1.. . . . . . . (44)

The equation of the same section, referred to any other pair of orthogonal axes
Oy, Oz, in the plane of y,2,, is as follows :—

(B)-y'+ (") -='+2{(By) +2(\")} g2+ 4{(By*+ ()" }yz=1. . . (444.)

From considerations of symmetry, it is evident that the coefficient (8») must be
null for every direction of the axis Oy in the plane of y,2,; counsequently, every
direction Oy in that plane, for which (81)=0, is an Euthytatic Axis.

To ascertain whether, and under what conditions, there are other Euthytatic Axes
in the planes of hexagonal symmetry besides the longitudinal and transverse axes, it
is to be considered, that for rectangular coordinates (8r) is covariant with »°z;
hence, let

(43 A.)

2y.0y=aw,
26BN +407,— ()= ()} cos 20— (B + (] . (45.)

The first factor of the above expression is null for the longitudinal and transverse
axes only. The conditions of there being additional euthytatic axes in the plane y,z2,
is, that the second factor shall vanish ; that is to say, that

3 (89, — (")
008 20 = S A — (B =G - - - (46)

sin Qw

then Br)=
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and that the value of » which makes it vanish shall neither be 0° nor 90°; that is to
say, that the second member of the above equation (46.) shall lie between 41 and
—1; in which case the equation is satisfied by equal values of w with opposite sigus.
Hence are deduced the following theorems, which are stated in such a form as to be
applicable to planes of symmetry, whether hexagonal or otherwise.

If, in any plane of tasinomic symmetry containing a pair of Orthogonal Euthy-
tatic Azxes, the difference of the Euthytatic coefficients for these axes be equal to or
greater than the Metatatic Difference, there are no additional euthytatic axes in that
plane. ‘

If, on the other hand, the difference of such Euthytatic coefficients be less than the
metatatic difference, there are, in such plane of symmetry, a pair of additional euthy-
tatic axes making with each other a pair of angles bisected by the orthogonal euthylatic
axes.

2w is the angle bisected by the axis Oy,.

In the case of Hexagonal Symmetry, the additional axes thus found are normal to
the faces of one pyramidal dodecahedron, and the edges of another.

24. Of Orthorhombic Symmetry.

Let a solid have one of the three principal euthytatic axes, Og,, normal to the
other two, O«,, Oy, ; let the last two be oblique to each other, and have equal sets
of homotatic coefficients, viz.—

@)= B0 =(re)+2") 0 2(w) (@) =2(2)+(Br), (47.)
then that solid may be said to have Orthorhombic Symmetry, its principal euthytatic
axes being normal to the faces of a right rhombic prism.

The existence or non-existence, and the position, of a pair of additional euthytatic
axes in the longitudinal planes of y,%,, 2,2,, is to be determined as in the preceding
article. 'When such axes exist, they are normal to the faces of an Octahedron with a
Rhombic Base.

25. Of Orthogonal Symmetry.

If the three principal Euthytatic Axes be orthogonal, they are normal to the faces
of a right rectangular or square prism, and to the edges of a right rhombic or square
prism. The existence or non-existence, and position, of a pair of additional euthy-
tatic axes in each of the principal planes of such a solid, are determined as in
article (23.).

If there be a pair of such additional axes in each of the three principal planes, they
are normal to the faces of an irregular Rhombic Dodecahedron, and to the edges of a
Rhombic Octahedron.

If there be a pair of such additional axes in two of the three punmpal planes, those.
axes are normal to the faces of an Octahedron with a Rectangular or square base, and
to the edges of an Octahedron with a Rhombic or square base.

202
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If there be a pair of such additional axes in one of the planes of orthotatic sym-
metry only, those axes are normal to the lateral faces of a Right Rhombic Prism.

26. Of Cyboid Symmetry.

The case of Cyboid Symmetry is that in which the Homotatic Coeflicients are equal
for three Orthogonal Axes, viz.—

@)=@)=(; EN+2A)=(ra)+2()=(p)+2(");
2(w) 4 (er) =20n) 4+ (Bp)==2(Ax)+(p)=0. . . . . . . (48)

In this case, the Principal Metatatic Axes coincide with the Principal Euthytatic
Axes, which are normal to the faces of a cube ; the Diagonal Metatatic Axes, normal
to the faces of a regular Rhombic Dodecahedron, are Euthytatic also; and there are,
besides, four additional euthytatic axes symmetrically situated between the first nine,

‘and normal to the faces of a regular octahedron, making in all ¢hirteen euthytatic
axes.

27. Of Monaxal Isotropy.

Monazxal Isotropy denotes the case in which the homotatic coefficients are com-
pletely isotropic round one axis only. In this case, the principal euthytatic axes are,
the axis of isotropy, and every direction perpendicular to it; and when there are
additional axes, determined as in the preceding articles, they are normal to the sur-
face of a cone.

28. Of Complete Isotropy.

In the case of Complete Isotropy of the Homotatic coefficients, every direction
is a euthytatic axis.

29. Probable Relations between Euthytatic Axves and Crystalline Forms.

In the preceding articles it has been shown, what must be the nature of the rela-
tions between the fifteen homotatic coefficients, for various solids, having systems of
euthytatic axes normal to the faces and edges of the several Primitive Forms knewn
in Crystallography.

It is probable that the normals to Planes of Cleavage are Euthytatic Axes of Mini-
mum Elasticity.

It may also be considered probable, that in some cases, especially in the Tessular
System, which corresponds to Cyboid Symmetry, and in the case of the pyramidal
summits of crystals of the Rhombohedral System, Euthytatic Axes correspond to
symmetrical summits of crystalline forms. In the icositetrahedral crystals of leucite
and analcime, and the tetracontaoctahedral crystals of diamond, there are twenty-six
symmetrical summits, one pair couespondmg to each of the thirteen axes of cyboid
symmetry.
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The following is a synoptical table of the various possible systems of euthytatic
axes, arranged according to their degrees and kinds of symmetry, and of the crystal-

line forms to the faces and edges of which such systems of axes are respectively
normal.

SystEms or EurHYTATIC AXES. CrysTALLINE Forms.
Faces. Epces.
I. AsyMMETRY. TETARTO-PRISMATIC SYSTEM.

1. Three unequal Oblique AXeS vvueressesssesssssessssrescses Oblique Hexahedron.

II. SYMMETRY ABOUT ONE PLANE. HEMIPRISMATIC SYSTEM.
2. Two unequal oblique axes, and one rectangular axis.. Right Rhomboidal Prism .c...eeeeee Oblique Rhombic Prism.
3. Two equal and one unequal oblique axis ...ceeessersrs. Obliqgue Rhombic Prism...cceeeeerseses Right Rhomboidal Prism.
III. ReoMmsic AND HEXAGONAL SYMMETRY. RHOMBOHEDRAL SYSTEM.

4. Three equt obhque principal axes round one axxs} Rhombohedron ....issescesessssscsesss Rhombohedron.

Of SYMMEtry.veeerseensenanseonese [ .
5. Three equi-oblique principal axes in one plane . .
¢ 'q princip P ’} Hexagonal Prism eciieesnranssasssaes Hexagonal Prism.
normal to axis of symmetry ....ee... [YTTTPITINRRIIN

6, Three pairs of secondary axes in planes of symmetry., Pyramidal Dodecahedron ....c....... Pyramidal Dodecahedron.

IV. OrTHORHOMBIC SYMMETRY. PrismaTic AND PYraAMIDAL SvsTEMS.

7. Two equal oblique transverse axes normal to one
longitudinal axiS sciieieeenseeienninenireecteiiians
8. Two pairs of secondary axes in longitudinal planes... Octahedron with Rhombic Base ... Octahedron with Rectangular Base.

} Right Rhombic Prism....cecssessseeres Rectangular Prism.

V. OrTHOGONAL SYMMETRY.

9. Three orthogonal axes, not all equal...cessseceeeesseesss. Rectangular and Square Prisms...... Right Rhombic and square prisms.

Octahedron with Rhombic Base and
Rectangular Prism,

Octahedron with square or rectan-y Octahedron with square or Rhombic
gular base .iivseeecacinenns } Base.

Same with 7. One pair of secondary axes ....sesesesessesss Right Rhowbic Prism.c.ecerversseenees Rectangular Prism.

10. Three pairs of secondary axes in principal planes...... Irregular Rhombic Dodecahedron

11. Two pairs of secondary axes ....ee.ss {

V1. CyBoip SYMMETRY, TEsSSULAR SYSTEM.
12. Three equal Orthogonal AXeS.iceuesercrrcecsescrecsncasene Cube.
13, Six Diagonal AXeS ..ieevesrsnssssassrsariossaressesnscenses Regular Rhombic Dodecahedron ... Cube and regular Octahedron.
14. Four symmetrical intermediate axes .eu.eeereesseesnssrs Regular Octahedron ....... sessseeesss Rhombic Dodecahedron.

VII. Mo~axAL IsotroPY.

15. One Axis of ISOtTOPY .eeeccenseencennsresiacccenssensiyunss ISotropic Laminae,
16. Innumerable Transverse AXeS .e.eciesessesesesssnnsssss Isotropic Fibres.
17. Innumerable Equi-Oblique Axes...cveseeussssorseresreeses Conical Cleavage.

VIII. ComrprLETE IsoTROPY.

18. Innumerable Axes of ISOtrOPY ieiesesessseressesnserses Amorphism.
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30. Mutual Independence of the Euthytatic and Heterotatic Axes, and of the Homotatic
and Heterotatic Coefficients.

The fifteen Homotatic Coefficients of the Biquadratic Surface, on which the
Euthytatic Axes depend, and the six Heterotatic Differences, coefficients of the
Heterotatic Ellipsoid, constitute twenty-one independent quantities; so that the
Euthytatic Axes may possess any kind or degree of symmetry or asymmetry, and the
Heterotatic Axes any other kind or degree, in the same solid.

Hence if it be true that crystalline form depends on the arrangement of Euthytatic
Axes, it follows that two substances may be exactly alike in crystalline form, and yet
differ materially in the laws of their elasticity, owing to differences in their respective
Heterotatic Coeflicients.

It may be observed, however, that this complete independence of those two systems
of axes and coefficients is mathematical only; and that their physical dependence or
independence is a question for experiment.

31. On Real and Alleged Differences between the Laws of the Elasticity of Solids, and
those of the Luminiferous Force.

For evei‘y conceivable system of tasinomic coefficients in a solid, the plane of
polarization of a wave of distortion is that which includes the direction of the
molecular vibration and the direction of its propagation, being, in fact, the plane of
distortion.

On the other hand, it appears to be impossible to avoid concluding, from the laws
of the Diffraction of Polarized Light, as discovered by Professor Stokes, and from
those of the more minute phenomena. of the reflexion of light, as investigated
theoretically by M. Caucny and experimentally by M. Jamin, that in plane-polarized
light the plane of polarization is perpendicular to the direction of vibration, or rather
(to avoid hypothetical language) to the direction of some physical phenomenon whose
laws of communication are to a certain extent analogous to those of a vibratory
movement.

This constitutes an essential difference between the laws of the Elastic Forces in a
solid, and those of the luminiferous force.

In order to frame, in connexion with the wave-theory of light, a mechanical
hypothesis which should take that difference into account, it has been proposed to
consider the elasticity of the luminiferous medium to be the same in all substances,
and for all directions, or Pantatically Isotropic,and to ascribe the various retardations
of light to variations in the inertia of the mass moved in luminiferous waves, in dif-
ferent substances, and for different directions of motion*.

Another essential difference between the laws of Solid Elasticity and those of the

* Philosophical Magazine, June 1851, December 1853.
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luminiferous force is, that under no conceivable system of tasinomic coefficients in a
homogeneous solid, would the plane of distortion in a wave be rotated continuously
round the direction of propagation.

Much has been written, both recently and in former times, concerning an alleged
difficulty in the theories of waves, both of sound and of light, arising from the
physical impossibility of the actual divergence of waves from, or their convergence
to, a mathematical point. This impossibility must be admitted; but the supposed
difficulty to which it gives rise in the theories of waves is completely overcome in
Mr. Stokes’s paper on the Dynamical Theory of Diffraction*, in which that author
proves, that waves spreading from a focal space, or origin of disturbance, of finite
magnitude, and of any figure, sensibly agree in all respects with waves spreading
from an imaginary focal point, so soon as they have attained a distance from the
focal space, which is large as compared with the dimensions of that space; so that
the equations of the propagation of waves spreading from imaginary focal points may
be applied without sensible error to all those cases of actual waves to which it is usual
to apply them.

The physical impossibility of focal points applies to light independently of all
hypotheses; for at such points the intensity would be infinite. It appears te be
worthy of consideration, whether this impossibility may not be connected with the
appearance of spurious disks of fixed stars in the foci of telescopes.

32. On the Action of Crystals on Light.

If we set aside those actions on light to which there is nothing analogous in the
phenomena of the elasticity of homogeneous solids, the laws of the refractive action
of a crystal on light are in general of a more symmetrical kind, or depend on fewer
quantities than those of its elasticity.

Thus, the elasticity of a homogeneous solid depends on twenty-one quantities ; its
crystalline form, on fifteen (the Homotatic Coefficients), while its refractive action
on homogeneous light in most cases is expressible by means of the magnitudes and
directions of the Orthogonal axes of FresNeL's Wave-Surface, making in all six
quantities. Crystals which possess only Rhombic or Hexagonal Symmetry in their
Euthytatic Axes, are usually Monaxally Isotropic in their action on light; while
crystals which possess only Cyboid Symmetry in their euthytatic axes, are completely
isotropic in their action on light.

From these remarks, however, there are exceptions, as in the case of the extra-
ordinary optical properties discovered by Sir Davip BREWSTER in Analcime, which,
in its refraction as well as in its form, is Cyboidally Symmetrical without being Iso-
tropic.

* Cambridge Transactions, vol. ix. part 1.

Glasgow, June 1855.
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Note referred to at page 261.

On Sylvestrian Umbre.

Without attempting to enter into the abstract theory of the Umbral Method, it
may here be useful to explain the particular case of its application which is employed
in this paper.

Let U be a quantity having an absolute value, constant or variable (such, for ex-
ample, as any physical magnitude), and %, v, ... &c. a set of quantities, m in num-
ber, such that U is of them a homogeneous rational function of the nth degree.
There are an indefinite number of possible sets of m quantities satisfying this con-
dition ; and the quantities of each set are related to those of each other set by m
equations of the first degree, called equations of linear transformation. Let

Upy Uiy evonnns

ug, 'Ug, .......
be two such sets.
Let C,,....... denote the coefficient of »™’..... in the development of
(udv+...0)"
and let
U=2{Ca,b,...Al,a,b,,.,ulavlb....}
=2{Ca,b,...A2,a,b,.,, ugavzb-o..}.

The two sets of coefficients A,, A, are connected by linear equations of trans-
formation, the investigation of which is much facilitated by the following process.
Let two sets, each of m symbols, «,, 3,, &c. ... &, 3, ... &c. be assumed, such that

o, B+ ..... =0ttt B0+ ...

and that, consequently,
(et B0+ 0. )" =3{C, ;... Bl w0}
=(etts Pt ...)" =32{C, 5 ... " Bee . u"v 0.0 )

Then if the m equations of transformation between the two sets of symbols «,, 3,...
and e, 3,... be formed, and if from them be deduced the equations between the two
sets of products ,’3/"...., and «,°B;"...., &c., and if, in the latter system of equations,
there be substituted for each product «f3°..... the corresponding coefficient A, ,,
the result will be the system of equations sought. Also, if any function of the pro-
ducts a*3’.... be invariant (i. e. a function, whose value, like that of the original
function U, is not altered by the transformation), the corresponding function of the
coefficients A will be invariant.

The symbols «, 8, &c., with reference to their relation to the coefficients A, are
called umbre ; that is, factors of symbols, whose equations of transformation are simi-
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lar to those of the coefficients A. In the umbral notation, umbrae are usually distin-
guished from symbols denoting actual quantities by being enclosed in brackets thus:

(@), (B), &e. .....

and each coefficient A is represented by enclosing in brackets that product of umbree
with which it is covariant ; thus:

Aa,b,,.,.,=(waﬂb......).

The Umbral Notation is applied to abbreviate the expression of determinants in a
manner of which the following are examples :—

(@) («B) (ay) &e.
[o Bom &e| @) (B) (B &
enotes
@ B, v &c. (@y) By) () &e.
&c. &c. &e.  &e.
(«B) (By) (B) &e.
a, vy, 9, &c. denotes (x) (») () &e.
B, v, 9 &c. (@d) (¢9) (&) r&c.
&c. &c. &c.  &e.

February 24, 1856.
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